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Genetic algorithms have a proven capability to explore a large space of solutions, and
deal with very large numbers of input features. We hypothesized that the application
of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-
PET) may help in diagnosis of Alzheimer’s disease (AD) and Frontotemporal Dementia
(FTD) by selecting the most meaningful features and automating diagnosis. We aimed
to develop algorithms for the three main issues in the diagnosis: discrimination between
patients with AD or FTD and healthy controls (HC), differential diagnosis between
behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive
aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and
BayesNet Naives as the fitness function, were developed and compared with Principal
Component Analysis (PCA). K-fold cross validation within the same sample and external
validation with ADNI-3 samples were performed. External validation was performed for
the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET
imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and
related disorders. Genetic algorithms identified the most meaningful features with the
minimum set of features, which may be relevant for automated assessment of brain
FDG-PET images. Overall, our study contributes to the development of an automated,
and optimized diagnosis of neurodegenerative disorders using brain metabolism.

Keywords: positron emission tomography, Alzheimer’s disease, frontotemporal dementia, primary progressive
aphasia, machine learning, unsupervised algorithm, genetic algorithm, evolutionary algorithm
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INTRODUCTION

Alzheimer’s disease (AD) and Frontotemporal dementia (FTD)
are among the most frequent neurodegenerative disorders
causing cognitive impairment and dementia (Bang et al., 2015).
Clinical diagnosis is often challenging, because early differential
diagnosis may be difficult. AD usually presents with memory
loss, which is a frequent symptom in the general population. FTD
may present with behavioral changes, executive dysfunction,
or language disorders (Fernández-Matarrubia et al., 2014).
According to the clinical presentation of FTD, three core
disorders are recognized: the behavioral variant FTD (bvFTD),
non-fluent primary progressive aphasia (nfPPA), and semantic
variant primary progressive aphasia (svPPA). Diagnostic
work-up involves several procedures including neurological
examination, neuropsychological assessment, neuroimaging
techniques [preferably magnetic resonance imaging (MRI)
and/or positron emission tomography (PET)], CSF biomarkers,
and genetics techniques.

In the setting of a potential AD or FTD diagnosis, three
main clinical questions arise. First, do memory loss or behavioral
symptoms signal the onset of a neurodegenerative disorder?
Memory or behavioral symptoms in early stages may be
non-specific, and may be normal, or explained by non-
neurodegenerative causes such as vascular damage, personality
changes or psychiatric disorders, among others (Devenney
et al., 2018). Second, is the cause AD or FTD? Behavioral
alterations and memory loss may present in both AD and
FTD; thus, differential diagnosis between these entities may
be challenging. Third, in cases with language impairment
presentation, what variant of PPA does the patient have? In
patients with word-finding difficulties, differential diagnosis
between the three main variants of PPA (nfPPA, svPPA, and
logopenic PPA) may be difficult (Marshall et al., 2018), and
accurate classification is important considering the different
underlying pathology, treatment, and outcomes for each subtype
(Matias-Guiu et al., 2015a).

Positron Emission Tomography (PET) technology has
progressed considerably, leading to new methods for early and
differential diagnosis of dementia (Zukotynski et al., 2018).
Although several tracers have been developed and studied,
18F-fluorodeoxyglucose (FDG) is probably the most used and
available. FDG-PET represents a unique, minimally invasive
tool for the evaluation of brain metabolism. However, FDG-PET
requires interpretation by neuroimaging specialists with a high
level of training (Matias-Guiu et al., 2015b). In addition, there
is currently a general lack of evidence to strongly recommend
the routine use of FDG-PET for the diagnosis of dementia
(Bouwman et al., 2018; Nestor et al., 2018).

Machine learning may assist clinical diagnostic decisions
by automatically classifying and predicting dementia using
computer-aided diagnosis techniques. There is broad recognition
that machine learning may assist in addressing the increasing
complexity and volume of imaging data. However, it is in
the acquisition of knowledge from multiple heterogeneous data
sources that machine learning confers the greatest advantage.
Importantly, these techniques are able not only to automate

diagnosis, but also to select the most relevant features. This
may be very relevant in simplifying the diagnostic process of
some disorders, such as FTD and its variants, in which a wide
range of techniques and a high level of expertise are necessary
to achieve an accurate diagnosis. The contributions of machine
learning to the field of dementia have recently been reviewed
(Habes et al., 2020). Previously, traditional regression modeling
techniques had been applied to clinical data to identify early
cases of AD and related dementias (So et al., 2017), to cluster
patients into fast vs. slow progression sub-types (Gamberger
et al., 2017), to distinguish mild cognitive impairment or normal
ageing from early dementia (Shankle et al., 1997), and to assist
in the interpretation and clinical significance of findings from
neuroimaging studies (Callahan et al., 1995; Lao et al., 2004;
Li et al., 2007; Klippel et al., 2008; Dyrba et al., 2015). Very
recent approaches (Nori et al., 2019) have also aimed to build
machine learning models to predict incident mild cognitive
impairment, AD, and related dementias using structured data
from administrative sources and electronic health records. In
multivariate classification, and to enable early diagnosis of
dementia, Support Vector Machine is the most frequently used
classifier (Nanni et al., 2018). In the setting of FTD, machine
learning algorithms have been applied very recently in some
studies, generally with relatively small sample sizes. In this
regard, they have been used to improve differential diagnosis
between FTD and AD using multimodal MRI (Kim et al., 2019)
or combining cognitive tests and MRI (Bachli et al., 2020), to
discriminate between patients with FTD and healthy controls
(HC) using structural MRI (Donnelly-Kehoe et al., 2019), and
in the early diagnosis of presymptomatic mutation carriers using
MRI (Feis et al., 2019). In addition, clustering techniques have
been used to capture different clinical and/or neuroimaging
patterns of both bvFTD and PPA, due to the heterogeneity of
these disorders (Whitwell et al., 2009; Matias-Guiu et al., 2019).

In this study, we hypothesized that machine learning
algorithms, and specifically genetic algorithms, may help
in the diagnosis of AD and FTD by selecting the most
meaningful features in FDG-PET images and automating
diagnosis. We aimed to apply machine learning techniques
for the development of computer-aided diagnosis models. We
developed a genetic algorithm-based methodology capable of
minimizing the required input data for FDG-PET imaging, in
order to achieve the highest accuracy with the minimum set of
data. Specifically, algorithms were developed for the three main
clinical questions previously outlined in the setting of AD and
FTD: first, detection of AD and FTD in comparison to a healthy
control group; second, differential diagnosis between AD and
bvFTD; and third, differential diagnosis between PPA variants.
To this end, we fed our algorithms with data from a large cohort
of well-characterized patients with AD, bvFTD, and PPA.

METHODOLOGY

Study Population
Patients were prospectively recruited from the Department of
Neurology of our hospital. All patients were evaluated using
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a comprehensive neuropsychological protocol and FDG-PET
imaging. Only patients with at least 2 years of follow-up
confirming the diagnosis were enrolled in this study. The
following diagnostic groups were included: (a) Patients with
bvFTD (n = 81); (b) Patients with PPA, categorized into the
three main clinical variants (non-fluent, semantic, and logopenic)
(n = 68); (c) Patients with Alzheimer’s disease (n = 88); and d)
Healthy controls (HC) (n = 39).

All patients met the current diagnostic criteria (Gorno-
Tempini et al., 2011; McKhann et al., 2011; Rascovsky et al.,
2011). At the moment of FDG-PET imaging, patients were at
mild or very mild stages of dementia according to the Clinical
Dementia Rating (Morris, 1993). The main characteristics of the
sample are shown in Table 1. All patients were recruited from our
center and underwent a common diagnostic protocol. All patients
meeting the inclusion criteria and examined between July 2014
and December 2018 were included.

All subjects and/or their legal representatives gave written
informed consent to participate in the study, which was approved
by the local research ethics committee from the Hospital Clinico
San Carlos. Research was performed in accordance with the
Declaration of Helsinki and its amendments.

According to the aims of the study, the sample was divided
into the following datasets:

(a) 81 patients with bvFTD and 39 HCs; (b) 88 patients with
AD and 81 with bvFTD; (c) 88 patients with AD and 39 HCs; and
(d) 68 patients with PPA and 17 healthy controls.

Clinical and Cognitive Assessments
All patients were evaluated with a comprehensive
neuropsychological protocol, including a standardized
neuropsychological battery that has been normalized and
validated in our setting (Peña-Casanova et al., 2009), and several
language tests developed by our group. The general cognitive
examination included the following tests: Addenbrooke’s
Cognitive Examination III, Corsi block-tapping test, Trail
Making Test, Symbol Digit Modalities Test, Stroop Color-
Word Interference Test, Free and Cued Selective Reminding
Test, Rey-Osterrieth Complex Figure (copy and recall), Visual
Object and Space Perception Battery, and Tower of London.
Language protocol was administered to patients with PPA and
it consisted of the following tasks elaborated by our group:
picture naming, action naming, word-picture matching, action-
verb matching, synonym judgment, semantic association,
initial phoneme deletion, word spelling, non-word repetition,
forward and backward digit span, reading (words, foreign
words, words without stress marks, and non-words), verbal
repetition (syllables, pairs of syllables, words, pairs of words,
non-words, and sentences), complex sentence comprehension,
constrained verb production, buccofacial praxis, and verbal
fluency (animals, words beginning with “p,” and actions). In
addition, spontaneous speech was evaluated with the “Cookie
Theft” from the Boston Diagnostic Aphasia Examination.
Further details about neuropsychological assessments are
specified elsewhere (Fernández-Matarrubia et al., 2017; Matias-
Guiu et al., 2017, 2018, 2019). Clinical Dementia Rating was
administered for grading severity (0.5 = very mild; 1 = mild).

Cerebrospinal fluid biomarkers were determined in selected
cases according to the clinician’s criteria.

Fluorodeoxyglucose Positron Emission
Tomography Image Acquisition,
Preprocessing, and Analysis
Fluorodeoxyglucose Positron Emission Tomography images
were performed according to the guidelines of the European
Association of Nuclear Medicine (Varrone et al., 2009). All
images were obtained with the same scanner, a Siemens Biograph
True Point PET/CT scanner. A mean dose of 185 MBq was
administered 30 min before image acquisition and after at least
6 h of fasting. Images were acquired after sensory rest of patients.
CT scan parameters were kVp/effective mAs/rotation: 130/40/1;
slice thickness: 3 mm; reconstruction interval: 1.5 mm; and pitch:
0.75. PET images were acquired for 10 min at a single-bed
position in sinogram mode. Images were reconstructed using
an iterative reconstruction process (true X method with two
iterations and 21 subsets).

Images were preprocessed and analyzed using Statistical
Parametric Mapping software (SMP12), running in Matlab
R2018A.1 Images were realigned and normalized to the standard
Montreal Neurological Institute space using a brain FDG-PET
template validated for dementia (Della Rosa et al., 2014). Global
mean normalization was used for intensity scaling. A region
of interest analysis was performed using Marsbar software,
enabling the extraction of mean uptake values for each of the
116 brain regions of the Automatic Anatomical Labeling atlas
for each patient.

In addition, a voxel-based brain mapping analysis was
conducted with a t-test for two independent samples to compare
each diagnostic group vs. 40 healthy controls. For these analyses,
images were smoothed with a full width at half maximum of
12 mm, and age and sex were added to the statistical model as
nuisance covariates. A family-wise error corrected p < 0.05 was
used for multiple comparison correction, with an extent number
of voxels of k = 30. These analyses were conducted to confirm the
expected regions of hypometabolism according to each diagnostic
group.

Data Analysis
Our main aim was to design a framework tool based on
artificial intelligence, particularly evolutionary machine
Learning techniques, to perform automatic diagnosis of
neurodegenerative diseases using FDG-PET images. However,
the high dimensionality of data provided by PET image analysis
requires derivation of techniques to reduce the dimensionality
of the problem without impacting performance. Feature
selection (also known as variable selection) can be defined as a
combinatorial problem (NP-optimization problem) that aims
to identify the smallest set of features (therefore, smallest set of
input variables), or their combination, that maximizes a measure
(Davies and Russe, 1994). In our case, FDG-PET imaging data
using the Automatic Anatomical Labeling atlas included more

1https://www.fil.ion.ucl.ac.uk/spm-statistical-parametric-mapping/
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TABLE 1 | Main demographic characteristics.

AD (n = 88) bvFTD (n = 81) PPA (n = 68) HC(n = 39)

Age (year) 73.90 ± 9.51 70.68 ± 8.36 72.62 ± 8.00 68.06 ± 5.67

Women n (%) 47 (53.4%) 36 (44.4%) 39 (57.4%) 24 (75.0%)

Years of education 9.51 ± 4.58 9.40 ± 4.69 11.84 ± 4.85 12.21 ± 4.70

ACE-III 68.06 ± 16.25 60.06 ± 21.06 60.44 ± 17.89 89.87 ± 5.79

MMSE 24.06 ± 4.27 21.91 ± 6.75 23.90 ± 5.26 29.15 ± 1.27

than 100 features, which represents a high-dimensionality
problem, as the number of variable combinations to be tested
in the classification algorithm can be computed following the
equation:

C =
n∑

r=1

n!
r! (n− r)!

In a previous study (Díaz-Álvarez et al., 2019), we
addressed the problem of dimensionality reduction for
automatic classification of PPA. In that study, we tested
Principal Component Analysis (PCA) and four feature selection
algorithms (ChiSquaredAttributeEval, ClassifierAttributeEval,
Cfs-SubsetEval, and WrapperSubsetEval), and evaluated the
performance of the classification process before and after the
feature selection phase. PCA is a dimensionality reduction
technique based on the orthogonal projection of the data on
a more reduced linear space (principal component analysis).
In contrast, feature selection techniques do not alter the
representation of the variables, and select a subset of the original
ones. Our research concluded that neither PCA nor any of the
feature selection algorithms tested successfully improved the
classification results. Moreover, the PCA only covered 88%
of the variance, and the number of features remained high.
As aforementioned, feature selection in high-dimensionality
problems can hardly be accomplished by traditional procedures
based on statistical techniques. Therefore, in this work we
address the hypothesis that Evolutionary Algorithms can help to
identify the best reduced set of relevant features and accomplish
satisfactory automation of the diagnosis of neurodegenerative
disorders using FDG-PET.

One of the most advanced evolutionary algorithms for feature
selection is the Genetic Algorithm (GA). This is a stochastic
method for function optimization based on the mechanics of
natural genetics and biological evolution. In nature, the genes of
organisms tend to evolve over successive generations to better
adapt to the environment, and so does the GA to select the
smallest set of input variables that maximizes the output measure.
Moreover, GAs are one type of the metaheuristic algorithms
(also known as population-based metaheuristic), that maintain
and improve multiple candidate solutions using population
characteristics to guide the search. One of the interesting
capabilities of metaheuristics is their ability to extract themselves
from a local minimum (Yang, 2014).

We designed a GA to assess the broad range of available
features and to identify the set of the most relevant ones. The
GA aimed to improve the automatic classification of patients with

a diagnosis of AD or FTD. It was programmed in Matlab, and
trained to obtain the best performance, in this case the highest
fitness value (that is, the best candidate solution that maximizes
the hit in diagnosis classification).

The general scheme of the GA designed is shown in
Algorithm 1. The implementation of a GA requires the definition
of the chromosome, that is the binary representation of solutions,
and operators to apply on the chromosome. Supplementary
Table 1 presents values for all the GA operators applied, that
were obtained after a careful exploration of the space of solutions.
These operators are:

1. Generations: iteration steps of the GA.
2. Population size: number of candidate solutions that

will be evolved.
3. Crossover: operator that allows more than one parent

selected, and one or more offspring produced, using
the genetic material of the parents. It is defined by
its probability.

4. Mutation: operator that produces a small random tweak in
the chromosome, to get a new solution.

5. Elitism: operator that involves copying a small proportion
of the fittest candidates, unchanged, into the next
generation. It is defined by its probability.

In this study, the number of generations and population
size were fixed at 100 and 128, respectively. The individual’s
chromosome has variable size, and every gene in the chromosome
is an integer value, which represents a feature. The individual’s
size and features were randomly selected for the initial
population, from among all possibilities. The number of features
depends on the dimensionality of the data contained in the
working database.

A feature cannot be duplicated in an individual’s chromosome;
if this occurs, a new feature will be randomly selected.
Starting from the initial population, the evolutionary process
is responsible for generating new individuals for the next
population by applying the genetic operators (crossover,
mutation, elitism). A percentage of the individuals with worst fit
are eliminated in order to benefit the final result. Supplementary
Figure 1 shows how the individual’s chromosome is built for the
initial population. As a result, an individual is an MxN matrix,
where M represents the number of instances and N the number of
features (individual’s size). Features are randomly selected from
the available features in the dataset to build the initial population.
For each feature, the database is accessed in order to extract values
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assigned from the instances. If a feature is selected twice, one copy
must be replaced.

Algorithm 1: General scheme for the Genetic Algorithm

Randomly generate the initial population;

while (generation < maxgeneration) do Evaluate the fitness of current
population; Sort the individuals by fitness;

Save for the next population the fittest individuals; Remove a percentage of the
worst individuals; Crossover;

Mutation;

end

New offsprings are generated by the crossover operator.
Firstly, we used double tournament selection to randomly select
two individuals from the population. Crossover is implemented
as 1-point crossover; therefore, each chromosome is split into
two sections. The first offspring contains the first chromosome
section from parent a, and the second section from parent b.
The second offspring contains the first chromosome section from
parent b, and the second section from parent a. Mutation is
performed by selecting a gene to be mutated, with a probability
between 0 and 1, and replacing the feature with another selected
randomly. In order to prevent duplication of features, a control
mechanism was implemented and the feature replacement
process is repeated until no duplication is achieved.

Supplementary Figure 2 shows the application of the
selection and crossover operator. In this Figure, double
tournament is used to select two members of the population
and new offsprings are generated after applying the 1-point
crossover operator.

The fitness function is defined as the execution of an
unsupervised classification algorithm. Each individual, consisting
of a variable number of features and their respective values for
all instances, is provided as input to the classification algorithm.
This algorithm returns the number of hits in the classification
process, which is assigned to the individual as its fitness value.
The maximum fitness is bounded by the total number of
instances in the database. We selected two different classification
algorithms to test our methodology: BayesNet Naives and K-
Nearest Neighbor, which are integrated in the Matlab Software
environment (the MathWorks Inc., 2018) and R2018a version,
where our GA was implemented. These classification algorithms
are available through fitcnb and fitcknn, respectively.

K-fold cross-validation was used for both classification
algorithms. Cross-validation is one of the most widely used
data resampling methods to assess the generalization ability of
a predictive model and to prevent overfitting. To build the final
model for the prediction of real future cases, the learning function
(or learning algorithm) f is usually applied to the entire learning
set. This final model cannot be cross-validated. The purpose of
cross-validation in the model building phase is to provide an
estimate for the performance of this final model on new data
(Ranganathan et al., 2018).

K-fold cross-validation splits data into k subsets and performs
K iterations to prevent overlapping. For each iteration, a different
subset was chosen for testing, and the remainder for training.

In this study, 5 and 3 values for k were considered appropriate
to obtain an accurate estimation. k = 5 was selected for larger
databases, and k = 3 for smaller datasets.

In the results section, we show the average results for 30
trials, for each dataset and set of features. Although we tested
different numbers of generations and population sizes, the most
relevant cutting was achieved with 100 and 128 as the number of
generations and population size, respectively.

Sample Size
The required training sample size for a particular machine
learning model applied to clinical research data is often unknown.
Characteristics of the sparsity of the sample, complexity of
data, and employed methodology are conditioning factors of
the sample size. This sample was considered appropriate for
this study according to previous experience with similar data
from a population that shares some clinical and neuroimaging
characteristics (Matias-Guiu et al., 2018, 2019). Additionally,
we followed a procedure of feature reduction that minimizes
the required sample size and prevents overfitting. Finally,
we performed a post hoc curve-fitting approach that requires
empirical testing to model and extrapolate the algorithm
performance as a function of sample size. Furthermore, K-fold
validation was used to avoid overfitting and ensure the
generalization capabilities of the achieved model.

Data Availability
The conditions of our ethics approval do not permit public
archiving of anonymized study data. Readers seeking access to
the data should contact the corresponding author or the local
ethics committee of Hospital Clinico San Carlos, Madrid. Access
can be granted only to named individuals in accordance with
ethical procedures governing the reuse of sensitive clinical data.
The datasets used during the current study are available from
the corresponding author after completion of a data sharing
agreement and approval by the Ethics Committee.

RESULTS

Voxel-Based Brain Mapping Results
In comparison to the HC group, the AD group showed
lower metabolism in both parieto-temporal lobes including the
posterior cingulate and precuneus. Conversely, bvFTD showed
lower metabolism mainly in both frontal lobes, as well as in
the right anterior temporal lobe (Figure 1). Regarding PPA,
nfPPA showed lower metabolism in the left frontal lobe; svPPA
in bilateral anterior temporal lobe predominantly in the left side;
and logopenic PPA was associated with left parieto-temporal
hypometabolism (Figure 2).

Discrimination Between Alzheimer’s
Disease and Healthy Controls
The discrimination between patients with AD and HCs with
the GA was achieved in 95.28% with K-Nearest Neighbor and
92.13% with BayesNet Naives. The number of features was
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FIGURE 1 | Regions with lower metabolism in the bvFTD group (blue) and AD (red) in comparison to HCs, displayed on MRI template. A 2-sample t-test with a
family-wise error corrected p < 0.05 was used. Images are shown using neurological orientation.

decreased in 73.28% with K-Nearest-Neighbor, and 89.66% with
BayesNet Naives. Figure 3 plots the fitness and number of features
obtained by generation for K-Nearest Neighbor and BayesNet
Naives as the fitness function. The number of features selected
are 31 features for K-Nearest Neighbor and 12 for BayesNet
Naives (Supplementary Table 2). The use of PCA to reduce
the dimensionality required 66 features to cover the 88.3%
of the variance.

Discrimination Between Behavioral FTD
and Healthy Controls
The GA discriminates between patients with bvFTD and HCs
with an accuracy of 96.67 and 95.83%, with cutting rates

of 87.93% for K-Nearest Neighbor and 95.69% for BayesNet
Naives, respectively (Figure 4). Features selected are shown in
Supplementary Table 2. Conversely, PCA required 59 features
covering the 88.6 of variance.

Differential Diagnosis Between
Behavioral FTD and Alzheimer’s Disease
K-Nearest Neighbor and BayesNet Naives achieved an accuracy
of 90.53 and 89.35%, respectively for the discrimination
between bvFTD and AD (Figure 5). The cutting rates were
78.45 and 89.66% for solutions with 25 and 12 features,
respectively. In contrast, PCA needs 47 features covering the
88.8% of variance.
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FIGURE 2 | Regions with lower metabolism in the PPA variants displayed on an MRI template. nfPPA (violet), svPPA (green), and lvPPA (yellow) were compared with
healthy controls using a 2-sample t-test with a family-wise error corrected p < 0.05. Images are shown using neurological orientation.

Classification of Primary Progressive
Aphasia Variants
Both classifiers, K-Nearest Neighbor and BayesNet Naives,
found solutions with an accuracy rate of 90–91%.
Figures 6A,B plot the results obtained with each classifier
as the fitness function. The best solutions contained 25
and 21 of the initial 116 features, with cutting rates
of 78.81 and 81.90%, respectively. When PCA was

applied, 66 features were included, accounting for 88.5%
of the variance.

Performance Analysis of Best
Classification Models
After the careful analysis of the previous results, BayesNet Naives
algorithm showed the best performance in terms of fitness value
for the four classification problems evaluated.
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FIGURE 3 | Results for AD records vs. HCs with K-Nearest Neighbor (A) and BayesNet Naives (B) as the fitness function. The X axis represents the generations, the
main Y axis corresponds to the fitness value, and the secondary Y axis shows the number of features selected. The blue line represents the progression of fitness
and the orange line the smallest set of features in the current generation.

FIGURE 4 | Results for bvFTD vs. HC with K-Nearest Neighbor (A) and BayesNet Naives (B) as the fitness function. The X axis represents the generation, the main
Y axis corresponds to the fitness value, and the secondary Y axis shows the number of features selected. The blue line represents the progression of fitness and the
orange line the smallest set of features in the current generation.

FIGURE 5 | Results for bvFTD vs. AD, with K-Nearest Neighbor (A) and BayesNet Naives (B) as the fitness function. The X axis represents the generation, the main
Y axis corresponds to the fitness value, and the secondary Y axis shows the features selected. The blue line represents the progression of fitness and the orange
line the smallest set of features in the current generation.

Then, we evaluated the performance of this algorithm for
five quality metrics (accuracy, precision, sensitivity, F1-score, and
specificity) in order to provide a deeper view of its classification
capability. In particular, F1-score, as a measure of a test’s accuracy
that considers both the precision and the recall of the test,

gives a good insight of what to expect in terms of accurate
binary decision.

Supplementary Table 3 shows the values of the quality metrics
for the aforementioned classification problems. As can be seen,
all the metrics achieve values very close to 1, and F1-score, as the
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FIGURE 6 | Results for PPA, with K-Nearest Neighbor (A) and BayesNet Naive s (B) as the fitness function. The X axis represents the generation, the main Y axis
corresponds to the fitness value, and the secondary Y axis shows the features selected. The blue line represents the progression of fitness and the orange line the
smallest set of features in the current generation.

compound metric, indicates an accurate discrimination between
the two classes of the classification problem.

Validation of the Alzheimer’s Disease
Model With the Alzheimer’s Disease
Neuroimaging Initiative Database
Although cross-validation techniques used along our model
creation and validation assure the generalization of the approach,
we have performed a further evaluation with data (FDG-PET
images) obtained from the ADNI-3 database.2 The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) is an ongoing multi-site
cohort study designed to characterize the trajectories of clinical,
imaging, and fluid biomarkers across the entire spectrum of
aging from clinically normal individuals through MCI to AD,
with data made available publicly for widespread use (Weiner
et al., 2013). For up-to-date information, see www.adni-info.org.
ADNI-3 has several improvements, including the addition of tau
and amyloid-PET (Weiner et al., 2017).

In this regard, we have created a new validation dataset
composed of 22 PET images from AD patients, and 19 PET
images from healthy controls. Supplementary Table 4 shows the
main characteristics of the ADNI samples. These data have been
provided to our AD vs. HC model as new data, and obtained the
automatic classification of patients. The performance on the new
data is measured with a set of quality metrics, including accuracy,
precision, recall and F1 score, as shown in Supplementary
Table 5. The last three give a better insight of the quality of the
model and work well on balanced and unbalanced datasets. This
model identified 86.36 and 95.45% of patients with AD diagnosis
for KNN and NB, respectively. Both obtained high F1-scores.

DISCUSSION

Diagnosis and classification of patients with neurodegenerative
disorders may be challenging. Because each neurodegenerative
disorder has a relatively specific topographic pattern, patterns
of cerebral glucose metabolism in FDG-PET imaging can be

2adni.loni.usc.edu

very useful for diagnosis. In this regard, different patterns of
hypometabolism emerge when comparing each diagnostic group
against HCs using whole-brain analyses. However, due to several
factors such as individual variability or disease stage, these
neuroimaging patterns are not entirely specific in clinical practice
on an individual basis. In addition, some brain regions are more
difficult to evaluate visually in early stages (Matias-Guiu et al.,
2015a). Our study addresses the application of machine learning
techniques to the diagnosis of AD, FTD, and related disorders.

Discrimination rate for AD vs. bvFTD, AD vs. HC, and bvFTD
vs. HCs was very high, 90.53, 95.28, and 96.67%, respectively.
These values represent a better classification than previously
reported works (Nestor et al., 2018). For instance, Rabinovici
et al. (2011) showed a sensitivity of 77.5% and a specificity of
98% for visual analysis in a group of 62 patients with AD and 45
patients with FTD (behavioral variant or aphasic variants). Our
approach obtained a sensitivity of 97.7, 96.6, and 96.3%, and a
specificity of 100, 92.3, and 84.6%. Comparing with the validation
process with the ADNI dataset, our results showed a sensitivity of
86.36 and 95.45%, although they present lower specificity values
(68% for NB). In addition, our classification rate was also higher
than achieved by applying other machine learning algorithms to
cortical thickness (Kim et al., 2019).

In this scenario, genetic algorithms can be designed efficiently
to cope with a large set of input features, explore a wide range
of solutions, and avoid local minima in a way that is difficult to
achieve with traditional machine learning techniques. Regarding
PPA, classification accuracy was also high but was incomplete.
This may be explained by a certain overlap between PPA variants,
which hinders the diagnosis and constitutes a controversial
issue in the field of PPA (Sajjadi et al., 2012). In this regard,
we recently suggested that PPA may be categorized into five
variants based on brain metabolism (Matias-Guiu et al., 2018).
Furthermore, one of our most striking results was the GA’s ability
to reduce the number of features. This was especially valuable
for differentiation between patients with AD and HCs, patients
with bvFTD and HCs, and between AD and bvFTD, in which
a limited set of 5–12 features achieved good accuracy. Regions
selected by the GA included several gyri previously linked to
these disorders in early stages, such as the precuneus and some
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parietal and temporal regions in AD, and the anterior cingulate,
and several frontal gyri in bvFTD. In contrast, the cutting rate
was lower for differential diagnosis of PPA variants, and a higher
number of features was necessary. Several features involving
mainly frontal, temporal, and parietal lobes of the left and right
hemispheres were included in the GA. This may be explained
by the regional overlap between PPA variants, which explains
the clinical and neuroimaging similarities between PPA subtypes.
Since our methodology addressed a feature selection approach
applying a GA to FDG-PET data images, we launched 30 trials
in order to reduce the influence of chance. Table 2 shows the
average values for each trial. On average, the best solutions
reached accuracy rates generally between 85 and 92% for most
of the experimental tests. Regarding the number of features, the
average cutting rate was always higher than 51% and higher than
64% for most of the results. These data suggest that, even when
considering average results, GA were able to find solutions that
improve the accuracy with a features cutting rate higher than
50%. The results achieved by the genetic algorithm are highly
generalizable as the tuning of the parameters of the algorithm and
training phase were carefully selected to avoid overfitting, and the
sample used for the training is large enough and representative of
the potential use in clinical practice.

Logistic regression analysis of FDG-PET results with some
clinical or genetic data has been used to predict the chance
of conversion to dementia in patients with mild cognitive
impairment (Arbizu et al., 2013). Machine learning constitutes
a powerful approach for the automation of neuroimaging-
based diagnosis of neurodegenerative disorders. Due to the
heterogeneity of these disorders, automation and feature
selection is challenging. However, traditional machine learning
approaches have failed to achieve highly accurate results in
complex diagnostic problems (Davatzikos, 2019) like the one
presented in this study. Characteristics such as a large set of
input features, and the lack of a large database with thousands
of instances per target class, encourage the development of
novel approaches. Genetic algorithms are a new computational
technique based on an analogy with Darwin’s theory of natural

selection. They include optimization methods based on iterative
search, enabling the evaluation of several solutions or hypotheses
in parallel, and even their recombination. Moreover, genetic
algorithms operate on a population of individuals to produce
increasingly accurate approximations, and do not require a priori
knowledge of the problem under study. To our knowledge, this
strategy has not previously been applied to PET imaging in
dementia. Interestingly, our results show several combinations
of features that achieved high diagnostic capacity using only
FDG-PET imaging. The reduced number of features selected with
the algorithms suggests that diagnosis may be easily automated
in future studies.

Another interesting approach is the combination of data from
several diagnostic techniques. In this regard, Gupta et al. (2019)
proposed a novel method for extracting data from PET and
structural MRI and then combining these features with CSF
and APOE genotype for the discrimination between AD, Mild
Cognitive impairment, and healthy controls. In their study, the
authors used truncated singular value decomposition (TSVD),
which is another approach to reduce dimensionality. This
method is similar to PCA. However, factorization is performed on
the data matrix, whereas in PCA is conducted on the covariance
matrix. Our approach is mainly based on the application of
genetic algorithms to conduct the feature selection process.
The genetic algorithm is a stochastic method for function
optimization that explores a much broader space of solutions, as
there is no limit for how many features the algorithm can choose.
Besides, traditional methods of feature selection essentially entail
trying out all the combinations of potential features. Genetic
feature selection takes a different approach—it learns from an
exploration/exploitation trade-off, searching a larger search space
and arriving at a better solution in less time.

Our study has some limitations. First, diagnosis was
not pathologically confirmed. However, all patients were
comprehensively examined, met the current diagnostic criteria,
and were followed-up for at least 2 years at a center with extensive
experience in these disorders. Second, all cases were evaluated
at the same center with the same PET scanner. However,

TABLE 2 | Average results for FDG-PET imaging data.

Fitness function Fitness Fitness rate (%) Features Cutting rate (%)

AD vs. HCs

K-Nearest Neighbor 115.11 90.64 47.96 58.66

BayesNet Naives 113.76 89.58 18.38 84.15

bvFTD vs. HCs

K-Nearest Neighbor 111.09 92.57 31.93 72.48

BayesNet Naives 110.84 92.36 17.19 85.18

bvFTD vs. AD

K-Nearest Neighbor 145.30 85.98 39.96 65.55

BayesNet Naives 145.34 86.12 28.60 75.34

PPA variants vs. HCs

K-Nearest Neighbor 76.23 89.69 56 51.77

BayesNet Naives 76.83 90.39 41 64.48

Decimal numbers represent average values.
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we performed a cross-validation for all the algorithms, and
an external validation using independent data from ADNI was
performed in the case of AD vs. healthy controls. Third, we
only included FDG-PET imaging in the analyses. Future studies
including other diagnostic techniques (other PET tracers, MRI,
etc.) may be interesting for head-to-head comparisons.

In conclusion, our study supports the use of FDG-PET
imaging in the diagnosis of AD and FTD. The application of
genetic algorithms to FDG-PET identified the most relevant
brain regions, which may be useful as features for the automated
diagnosis of neurodegenerative disorders. According to our
results, the use of such metaheuristic techniques as genetic
algorithms is probably an optimal strategy for identifying the
most relevant features and maximizing diagnostic accuracy.
Overall, our study contributes to progress toward automated
and optimized diagnosis of neurodegenerative disorders using
FDG-PET imaging.
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